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High Dimensional Data
¢ Given a cloud of data points we want to understand their 

structure

10/30/24



Clustering 5

The Problem of Clustering

¢ Given a set of points, with a notion of distance between 
points, group the points into some number of clusters, so 
that 
l Members of a cluster are close/similar to each other
l Members of different clusters are dissimilar

¢ Usually:
l Points are in a high-dimensional space
l Similarity is defined using a distance measure

• Euclidean, Cosine, Jaccard, edit distance, …

10/30/24
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Example: Clusters
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Clustering is a hard problem!
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Why is it hard?
¢ Clustering in two dimensions looks easy

¢ Clustering small amounts of data looks easy

¢ And in most cases, looks are not deceiving

¢ Many applications involve not 2, but 10 or 10,000 dimensions

¢ High-dimensional spaces look different
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Curse of Dimensionality
¢ High-dimensional spaces look different: The so-called 

“Curse of Dimensionality”
l Need many more data points scattered in the High Dimensional (HD) 

space in order to form clusters (instead of being isolated dots in the 
mostly empty space) !

l Almost all pairs of points are at about the same distance in HD space
=> The notion of neighborhood becomes not very useful as the distance  
between a data point and is its nearest neighbor approaches the distance 
to its farthest neighbor.
=> “neighborhood is not that local ! 

Source: K.Beyer et al, “When is “Nearest Neighbor” Meaningful ?”, ICDT 99.
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Curse of Dimensionality (cont’d)
Consider a sphere of radius r=1 in a D-dimensional space 
Fraction of the volume of the sphere that lies between radius r=1-ε 
and r=1 is given by: 

=> As D >> 1, most of the vol. of the sphere is concentrated in a thin-shell 
near the surface of the sphere…………………(**)
Assume data points are randomly scattered in the D-dim space under 
uniform density (i.e. const. # of data points per unit volume)
For an arbitrary data point P (whose position is taken as the origin),            
(**) implies that most of the neighboring points of P are of more or less the 
same distance from it (and NOT quite local to P) when D >> 1

VD (1)−VD (1− ε )
VD (1)

=1− (1− ε )D

where 
VD (r) = Vol. of a D-dim sphere of radius r  
         =  KDr

D  
for some constant KD.
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Curse of Dimensionality (cont’d)

Gaussian Densities in 
higher dimensions
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Clustering Problem: SkyCat
¢ A catalog of 2 billion “sky objects” represents objects 

by their radiation in 7 dimensions (frequency bands)

¢ Problem: Cluster into similar objects, e.g., galaxies, 
nearby stars, quasars, etc.

¢ Sloan Digital Sky Survey is a newer, better version of this
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Example: Clustering CD’s

¢ Intuitively: Music divides into categories, and 
customers prefer a few categories
l But what are categories really?

¢ Represent a CD by a set of customers who bought it

¢ Similar CDs have similar sets of customers, and vice-
versa
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Example: Clustering CDs

Space of all CDs:

¢ Think of a space with one dim. for each customer
l Values in a dimension may be 0 or 1 only
l A CD is a point in this space is (x1, x2,…, xk), 

where xi = 1 iff the i th customer bought the CD
• Compare with boolean matrix: rows = customers; cols. = CDs

¢ For Amazon, the dimension is tens of millions

¢ Task: Find clusters of similar CDs

¢ An alternative: Use Minhash/LSH to get Jaccard distance 
between “close” CDs

¢ Use that as input to clustering
10/30/24
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Example: Clustering Documents
Finding topics:

¢ Represent a document by a vector  
(x1, x2,…, xk), where xi = 1 iff the i th word 
(in some order) appears in the document
l It actually doesn’t matter if k is infinite; i.e., we don’t limit the set of 

words

¢ Documents with similar sets of words 
may be about the same topic



Clustering 16

Cosine, Jaccard, and Euclidean

¢ As with CDs we have a choice when we think of 
documents as sets of words or shingles:
l Sets as vectors: measure similarity by the cosine 

distance
l Sets as sets: measure similarity by the Jaccard distance
l Sets as points: measure similarity by Euclidean distance
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Overview: Methods of Clustering

¢ Hierarchical:
l Agglomerative (bottom up):

• Initially, each point is a cluster
• Repeatedly combine the two 

“nearest” clusters into one
l Divisive (top down):

• Start with one cluster and recursively split it

¢ Point assignment:
l Maintain a set of clusters
l Points belong to “nearest” cluster

10/30/24
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Hierarchical Clustering
¢ Key operation: 

Repeatedly combine 
two nearest clusters

¢ Three important questions:
l 1) How do you represent a cluster of more 

than one point?
l 2) How do you determine the “nearness” of clusters?
l 3) When to stop combining clusters?
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Hierarchical Clustering

¢ Key operation: Repeatedly combine two nearest
clusters

¢ (1) How to represent a cluster of many points?
l Key problem: As you build clusters, how do you represent the 

location of each cluster, to tell which pair of clusters is closest?

¢ Euclidean case: each cluster has a 
centroid = average of its (data)points

¢ (2) How to determine “nearness” of clusters?
l Measure cluster distances by distances of centroids

10/30/24
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Example: Hierarchical clustering
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And in the Non-Euclidean Case?

What about the Non-Euclidean case?

¢ The only “locations” we can talk about are the points 
themselves
l i.e., there is no “average” of two points

¢ Approach 1:
l (1) How to represent a cluster of many points?

clustroid = (data)point  “closest ” to other points
l (2) How do you determine the “nearness” of clusters? Treat 

clustroid as if it were centroid, when computing intercluster
distances
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“Closest” Point?

¢ (1) How to represent a cluster of many points?
clustroid = point “closest ” to other points

¢ Possible meanings of “closest”:
l Smallest maximum distance to other points
l Smallest average distance to other points
l Smallest sum of squares of distances to other points

• For distance metric d clustroid c of cluster C is: å
ÎCxc

cxd 2),(min

Centroid is the avg. of all (data)points 
in the cluster. This means centroid is 
an “artificial” point.
Clustroid is an existing (data)point 
that is “closest” to all other points in 
the cluster.

X

Cluster on
3 datapoints

Centroid

Clustroid

Datapoint
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Defining “Nearness” of Clusters
¢ (2) How do you determine the “nearness” of clusters? 

l Approach 2:
Intercluster distance = minimum of the distances between any 
two points, one from each cluster

l Approach 3:
Pick a notion of “cohesion” of clusters, e.g., maximum distance 
from the clustroid

• Merge clusters whose union is most cohesive
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Cohesion
¢ Approach 3.1: Use the diameter of the merged cluster = 

maximum distance between points in the cluster

¢ Approach 3.2: Use the average distance between points 
in the cluster

¢ Approach 3.3: Use a density-based approach
l Take the diameter or avg. distance, e.g., and divide by the number 

of points in the cluster
l Perhaps raise the number of points to a power first, e.g., square-

root
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Implementation
¢ Naïve implementation of hierarchical clustering:

l At each step, compute pairwise distances 
between all pairs of clusters, then merge

l O(N3)

¢ Careful implementation using priority queue can reduce 
time to O(N2 log N)
l Still too expensive for really big datasets 

that do not fit in memory
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k-means clustering
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k–means Algorithm(s)
¢ Assumes Euclidean space/distance

¢ Start by picking k, the number of clusters

¢ Initialize clusters by picking one point per cluster
l Example: Pick one point at random, then  k-1 other points, each 

as far away as possible from the previous points
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Populating Clusters

¢ 1) For each point, place it in the cluster whose current 
centroid it is nearest

¢ 2) After all points are assigned, update the locations of 
centroids of the k clusters

¢ 3) Reassign all points to their closest centroid
l Sometimes moves points between clusters

¢ Repeat 2 and 3 until convergence
l Convergence: Points don’t move between clusters and centroids 

stabilize
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Example: Assigning Clusters
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Example: Assigning Clusters
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Example: Assigning Clusters

10/30/24
31
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K-means

Iterate:
l Assign/cluster each example to closest center
l Recalculate centers as the mean of the points in a cluster

Mean of the points in the cluster:

µ(C) = 1
|C |

x
x∈C
∑
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K-means loss function

K-means tries to minimize what is called the “k-means” 
loss function:

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

that is, the sum of the squared distances 
from each point to the associated cluster 
center 
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Minimizing k-means loss

Iterate:
1. Assign/cluster each example to closest center
2. Recalculate centers as the mean of the points in a cluster

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

Does each step of k-means move towards reducing 
this loss function (or at least not increasing)?
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Minimizing k-means loss

Iterate:
1. Assign/cluster each example to closest center
2. Recalculate centers as the mean of the points in a cluster

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

Sketch of proof/ argument:

1. Any other assignment would end up in a larger loss

1. The mean of a set of values minimizes the squared 
error
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Minimizing k-means loss

Iterate:
1. Assign/cluster each example to closest center
2. Recalculate centers as the mean of the points in a cluster

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

Does this mean that k-means will always find the 
minimum loss/clustering?
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Minimizing k-means loss

Iterate:
1. Assign/cluster each example to closest center
2. Recalculate centers as the mean of the points in a cluster

loss = d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

NO!  It will find a minimum.

Unfortunately, the k-means loss function is generally not 
convex and for most problems has many, many minima

We’re only guaranteed to find one of them
=> It’s therefore important to try different random seeds
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Getting the k right
How to select k?

¢ Try different k, looking at the change in the average 
distance to centroid, as k increases.

¢ Average falls rapidly until right k, then changes little

k

Average
distance to

centroid

Best value
of k
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Example: Picking k
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Examples of k-means clustering
¢ Clustering RGB vectors of pixels in images

¢ Compression of image file: N x 24 bits
l Store RGB values of cluster centers: K x 24 bits
l Store cluster index of each pixel: N x log K bits

4.2% 16.7%8.3%
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K-Means time complexity

Variables: K clusters, n data points, 
m features/dimensions, I iterations

What is the runtime complexity?
l Computing distance between two points (e.g. Euclidean)
l Reassigning clusters
l Computing new centers
l Iterate…
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K-Means time complexity

Variables: K clusters, n data points, 
m features/dimensions, I iterations

What is the runtime complexity?
l Computing distance between two points is O(m) where m is 

the dimension of the vectors/number of features.
l Reassigning clusters: O(Kn) distance computations, or 

O(Knm)
l Computing centroids: Each points gets added once to some 

centroid: O(nm)
l Assume these two steps are each done once for I iterations:  

O(IKnm)
In practice, K-means converges quickly and is fairly fast 
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Limitations of K-means
¢ Need to determine “K” via domain knowledge or heuristics (as 

stated before)

¢ Only converge to local optimal
l Need to try multiple starting points
l Nice and Practical Research results on “Careful Randomized Seeding” in 

available, e.g. :
• K-means++ and
• K-means //  (aka K-means parallel)
Refer to the “More on K-means” supplementary lecture notes in course website.

¢ “Hard” assignment of each data point to a single cluster:
l Each data point can only be assigned to 1 cluster (class)
l What about points that lie in between groups ? e.g. Jazz + Classical 

¢ Overall results can be affected by a few Outliners

Can we do better ? 
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The famous “GMM” – The Gaussian Mixture Model 
Key Idea: 

Assume Gaussian distribution of data points

within each cluster

¢ A sample data set

Single Gaussian Mixture of two Gaussians
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Clustering with Gaussian mixture density
¢ Each cluster represented by Gaussian density

l Center, as in K-means
l Covariance matrix: cluster spread around center

p(x) = N(x µ,Σ) = (2π )−d /2 | Σ |−1/2 exp − 1
2
(x − µ)T Σ−1(x − µ)⎛

⎝⎜
⎞
⎠⎟

Determinant of
covariance matrix Σ Quadratic function of

point x and mean μ
Data dimension d
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K=3

The Gaussian Mixture Model (GMM) (cont’d)

Combine simple models 
into a complex model:

Component

Mixing coefficient: can be seen as the 
“contribution” from Gaussian component k
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The Gaussian Mixture Model (GMM) (cont’d)
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The Maximum Likelihood Estimator (MLE)

Input parameter:

θ
Observed Output: 

X = xn
A system to generate
a r.v.       based on some 
probability distribution 
with parameter

X

θ

Probability density 

x

p(X = x θ =θ1) :  probability density function of X  if θ =θ1

p(X = x θ =θ 2)

p(X = x θ =θ 3)

Problem: Given the observed o/p of X = xn,  provide an estimate for θ.

θMLE
*

 = Max. Likelihood Estimator (MLE) of θ = arg{max
θi

[p(X = xn θ =θ i)]}

and in the above example, θMLE
* =θ 2
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An Alternative Estimator:
The Maximum A Posteriori (MAP) Estimator

Input parameter:

θ
Observed Output: 

X = xn
A system to generate
a r.v.       based on some 
probability distribution 
with parameter

X
θ

θMAP
*

 = Max. a posteriori estimator (MAP) of θ = arg{max
θi

[p(θ =θ i X = xn )]}

       = arg{max
θi

[ p(X = xn  and θ =θ i)
p(X = xn )

]} = arg{max
θi

[
p(X = xn θ =θ i)p(θ =θ i)

p(X = xn )
]}

       = arg{max
θi

[p(X = xn θ =θ i)p(θ =θ i)]}

The "true" probability distribution, p(θ ),  of the parameter, i.e. θ, to be estimated
is the so-called prior distribution.
If no prior knowledge about the distribution of θ  is available, 
we can assume p(θ ) ~ uniform distribution, i.e. p(θ =θ i) = some constant.
In this case, we have  θMAP

* =θMLE
*
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The Gaussian Mixture Model (GMM) (cont’d)
¢ Given the set of N data points represented by  a matrix X, we 

find the model parameters      ,     and      (which are vectors and a 
matrices) which maximize the probability of the occurrence of 
the observed data, via the Maximum (log) Likelihood Estimation 
(MLE) approach

¢ Solution: use standard, iterative, numeric optimization methods 
or the Expectation Maximization (EM) algorithm (see next slides 
and Chapter 9 of PRML of C.M.Bishop). 

Log of a sum; no closed form maximum.

π µ Σ

p(X π ,µ,Σ) = p(xn ) =
n=1

N

∏ π kN (xn µk ,Σk )
k=1

K

∑
n=1

N

∏
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How to Maximizing Log Likelihood for GMM
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K=3

The Gaussian Mixture Model (GMM) (cont’d)

Combine simple models 
into a complex model:

Component

Mixing coefficient: can be seen as the 
“contribution” from Gaussian component k
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Derivation of MLE for GMM

n

n

,n

,n

n

,n

γ (zk,n ) ≡ Prob(zk,n =1| xn )   where zk,n =1 iff the n th  data point xn  is generated by cluster k

Nk ≡ γ (zk,n )
n
∑ = effective number of data points in the k thcluster.

Recall that  N (x µ,Σ) = (2π )−d /2 |Σ |−1/2 exp − 1
2
(x − µ)T Σ−1(x − µ)

⎛
⎝⎜

⎞
⎠⎟
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Derivation of MLE for GMM (cont’d)

,n

n

,n

,n

n

Multiply by  π k  and summing over k, we get λ= − N ⇒
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The Gaussian Mixture Model (GMM)
¢ Given the set of N data points represented by  a matrix X, we 

find the model parameters      ,     and      (which are vectors and a 
matrices) which maximize the probability of the occurrence of 
the observed data, via the Maximum (log) Likelihood Estimation 
(MLE) approach

¢ Solution: use standard, iterative, numeric optimization methods 
or the Expectation Maximization (EM) algorithm (see next slides 
and Chapter 9 of PRML of C.M.Bishop). 

Log of a sum; no closed form maximum.

π µ Σ

p(X π ,µ,Σ) = p(xn ) =
n=1

N

∏ π kN (xn µk ,Σk )
k=1

K

∑
n=1

N

∏
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Summary: How to Maximizing Log Likelihood for GMM
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Derivation of MLE for the
Mixture of Gaussian model (cont’d)

,n

,n
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Expectation Maximization (EM) approach for 
the Gaussian Mixture Model (GMM)

1. Initialize the parameters: means       , covariances and 
mixing coeff.        of the K Gaussian components.

2. E Step: Assign each point       an assignment score                     
for each cluster     

3. M Step: Given scores, adjust      ,       ,         for each cluster        

4. Evaluate Likelihood value. If likelihood value or parameters 
converge, stop ;  Otherwise Goto Step 2. (the E Step)

where        

is the 0-1 indicator r.v.  showing whether       belongs to cluster 

is an estimate of the posterior probability that data point       
is “contributed” by cluster    ,  i.e. the conditional probability that  
belongs to cluster     given the value of     and parameters      ,       ,     

π k

µk Σk

xn γ (zk,n )
k

µk Σk
π k k

γ (zk,n )
k

xn

µk Σk π k

xn
k xn

zk,n xn k
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Expectation Maximization (EM) approach for 
the Gaussian Mixture Model (GMM)
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Expectation Maximization (EM) approach for 
the Gaussian Mixture Model (GMM)

γ (zk,n )

γ (zk,n )
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Expectation Maximization (EM) approach for 
the Gaussian Mixture Model (GMM)

γ (zk,n )

γ (zk,n )

γ (zk,n )
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Expectation Maximization (EM) approach for 
the Gaussian Mixture Model (GMM)

γ (zk,n )

γ (zk,n )
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Expectation Maximization (EM) approach for 
the Gaussian Mixture Model (GMM)

γ (zk,n )

γ (zk,n )
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Expectation Maximization (EM) approach for 
the Gaussian Mixture Model (GMM)

Likelihood is the probability for the observed data-set X to occur (i.e
to be generated) given the current values of the parameters.
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The EM approach for GMM (cont’d)



Clustering 68

Recap: EM for GMM

The EM Algorithm

1. Initialize the parameters: means       , covariances and 
mixing coeff.        of the K Gaussian components.

2. E Step: Assign each point       an assignment score                     
for each cluster     

3. M Step: Given scores, adjust      ,       ,         for each cluster        

4. Evaluate Likelihood value. If likelihood value or parameters 
converage, stop ;  Otherwise Goto Step 2. (the E Step)

is an estimate of the posterior probability that data point       
is “contributed” by (or belongs to) cluster    ,  i.e. the conditional 
probability given the parameters      ,       ,       and the observation   

π k

µk Σk

xn γ (zk,n )
k

µk Σk
π k k

γ (zk,n )
k

xn

µk Σk
π k xn
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Comparing to the K-means algorithm
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Application: Using GMM for Image Segmentation
Source: 

https://kittipatkampa.wordpress.com/2011/02/17/image-segmentation-using-gaussian-mixture-models/

Original Image Segmentation results using GMM with 3 components
Input Features: 
x-y pixel locations & pixel lightness/color in L*a*b color 
space
Output Results: 
Each color represents a class ; The brightness 
represents the posterior probability – darker pixels 
represent high uncertainty of the posterior distribution. 
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From K-means to GMM
¢ K-means is a 0-1 classifier, which assigns every data point to one and 

only one cluster
l As shown previously, K-means can also be formulated as EM

¢ Mixture of Gaussians is a Probability Model to describe/characterize a 
given set of data
l GMM can be used as a “Soft” classifier
l For every point we can quantify the likelihood that it belongs to a 

particular cluster
l Once you have established the model for a given data set, you can use 

it for other applications, e.g.  Prediction, Density Estimator, statistical 
inference etc.

¢ The EM-approach can be generalized to other non-Gaussian 
distributions.

¢ K-means, GMM and the general EM-approach are all widely 
used in practice for large-scale problems.
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K-means and GMM CANNOT deal with 
Clusters of Random Shapes !!
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Density-based Clustering

¢Why Density-Based Clustering?

Results of a k-medoid
algorithm for k=4

Basic Idea:
Clusters are dense regions in the data 
space, separated by regions of lower 
object density
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Density-based Clustering
¢ Density-based Clustering locates regions of 

high density that are separated from one 
another by regions of low density.  

¢ Density = number of points within a specified 
radius (ε) (in d-dimensional space)

¢ Why Density-Based Clustering methods?
l Discover clusters of arbitrary shape. 
l Clusters – Dense regions of objects 

separated by regions of low density
¢ DBSCAN – the first density based clustering

l To be covered in ESTR4300 ! All are welcome
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Backup Slides 
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DBSCAN: Density Based Spatial Clustering of 
Applications with Noise

¢ Proposed by Ester, Kriegel, Sander, and Xu
(KDD1996) – 2014 SIGKDD Test of Time Award

¢ Relies on a density-based notion of cluster: A 
cluster is defined as a maximal set of density-
connected points.

¢ Discovers clusters of arbitrary shape in spatial 
databases with noise
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DBSCAN Terminology

¢ A point is a core point if  it has more than a 
specified number of points (MinPts) within a 
radius of ε
l These are points that are at the interior of a 

cluster

¢ A border point has fewer than MinPts within ε, but
is in the neighborhood of a core point

¢ A noise point is any point that is not a core point 
or a border point. 
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Border & Core

Core

Border

Outlier

ε = 1 unit

MinPts = 5
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Key Idea for Cluster Formation under DBSCAN

¢ Any two core points are close enough– within a 
distance ε of one another – are put in the same 
cluster

¢ Any border point that is close enough to a core 
point is put in the same cluster as the core point

¢ Noise points are discarded



Concepts: ε-Neighborhood
n ε-Neighborhood - Points within a radius of ε

from a point. (epsilon-neighborhood)
n “High density” - ε-Neighborhood of a point 

contains at least MinPts of points

q p
εε

ε-Neighborhood of p
ε-Neighborhood of q

Density of p is “high” (w.r.t. MinPts = 4)

Density of q is “low” (w.r.t. MinPts = 4)



Concepts: Reachability

n Directly Density-Reachable
¡ A point q is directly density-reachable from a 

point p if q is within the ε-Neighborhood of p 
and p is a core point.

q p
εε

n q is directly density-
reachable from p

n p is not directly density-
reachable from q !

=> Asymmetric in general



Concepts: Reachability
n Density-Reachable: 

¡ A point q is density-reachable from p w.r.t ε and MinPts
if there is a chain of points p1,…,pn, with p1=p, pn=q such 
that pi+1 is directly density-reachable from pi w.r.t ε and 
MinPts for all 1 <= i <= n

s

n t is density-reachable from s
n BUT s is not density-reachable 

from t !
n Transitive closure of Direct 

Density-Reachability ; 
Asymmetric in general !

t



Concepts: Connectivity
n Density-connectivity

¡ Point p is density-connected to Point q w.r.t ε
and MinPts if there is a point r such that both p
and q are density-reachable from r w.r.t ε and 
MinPts

p
q

r

n p and q are density-
connected to each other by r

n v and u are density-
connected to each other by r

n Density-connectivity is 
symmetric

v

u



Density-reachable vs. Density-Connected

p

q
p1

p q

o

p and q are Density-connected via o

p is Density-reachable from q



Formal Description of a Cluster
n Given a data set D, parameter ε and a threshold of 

MinPts.
n A cluster C is a subset of points satisfying two 

criteria:
¡ Connected: For all p,q in C: p and q are density-

connected.
¡ Maximal: For all p,q: if p in C and q is density-reachable 

from p, then q in C (=> p is a core point)
=> Each cluster has at least 1 Core point
=> Each cluster contains at least MinPts points 

n Note: a Cluster contains both Core and Border points  
n Noise: points which are not directly density-reachable from 

at least one core point.
n The set of Clusters defined as above is ALWAYS Unique 

!...except…=> border point may belong to multiple cluster



Cluster Examples 

Connected: For all p,q in C: p and q are density-connected.
Maximal: For all p,q: if p in C and q is density-reachable from p, then  q in C ; 

also => each cluster has at least 1 Core point
n {o1, o10} alone is NOT a cluster by itself because NOT Maximal
n A Border point, e.g. o10,  can belong to MULTIPLE clusters 
n Clusters produced by DBSCAN is NOT necessarily disjoint !  
n However, if p belongs to more than 1 cluster, it MUST BE a Border point

ó A core point always belongs to a Unique cluster, Why ?

C1 = {o1, o2,…o10}
C2 = {o10, o11,…,o17}
o18 is a noise point
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DBSCAN: The Algorithm (Simplified)

• Worst-case Time Complexity = O(n2)  ! (trivial ?) 
• NOT O(n log n) Time as initially mis-claimed (for 17 years) !  

• Time complexity = Ω(n4/3)  for d > 2 [Gan&Tao 2015] ; 
• O(n) space complexity
• O(n log n) Time only for 2-dimensional case [Gunawan 2013] ; 
• ρ-approx DBSCAN runs in O(n) Time in Expectation for all 

dimensions [Gan&Tao 2015]

/* Result is independent of the order of 
processing the points EXCEPT…  */



Clustering 89

DBSCAN: The Algorithm 
(a more detail version)

DBSCAN(D, eps, MinPts)

C = 0

for each unvisited point P in 
dataset D

mark P as visited

N = regionQuery(P, eps)

if sizeof(N) < MinPts

mark P as NOISE

else

C = next cluster

expandCluster(P, N, C,                         
eps, MinPts)

expandCluster(P,N,C,eps,MinPts)

add P to cluster C

for each point P' in N 
if P' is not visited

mark P' as visited
N' = regionQuery(P', eps)

if sizeof(N') >= MinPts

N = N joined with N'
if P' is not yet member of 
any cluster

add P' to cluster C



An Example

MinPts = 4

e
C1

e

e

C1

C1
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Running the DBSCAN Algorithm: An Example
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Running the DBSCAN Algorithm: An Example
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Running the DBSCAN Algorithm: An Example



Another Example



DBSCAN: Determining ε and MinPts
n Idea is that for points in a cluster, their kth

nearest neighbors are at roughly the same 
distance (BUT may NOT always be true !!)

n Noise points have the kth nearest neighbor at 
farther distance

n So, plot sorted distance of every point to its kth

nearest neighbor



DBSCAN: Determining ε and MinPts

n Distance from a point to its kth nearest 
neighbor=>k-dist

n For points that belong to some clusters, the 
value of k-dist will be small if k is not larger than 
cluster size

n For points that are not in a cluster such as noise 
points, the k-dist will be relatively large

n Compute k-dist for all points for some k
n Sort them in increasing order and plot sorted 

values
n A sharp change at the value of k-dist that 

corresponds to suitable value of ε and the value 
of k as MinPts



DBSCAN: Determining ε and MinPts

n A sharp change at the value of k-dist that 
corresponds to suitable value of ε and the value 
of k as MinPts
¡ Points for which k-dist is less than ε will be labeled as 

core points while other points will be labeled as noise 
or border points.

n If k is too large=> small clusters (of size less 
than k) are likely to be labeled as noise

n If k is too small=> Even a small number of 
closely spaced that are noise or outliers will be 
incorrectly labeled as clusters



Sensitivity of DBSCAN w.r.t. the Choice of ε

• Choice of Eps1 will give 3 clusters and Eps2 will give 2 clusters ; these choices of 
Eps are robust w.r.t. minor perturbation ; 

• Eps3 is a bad choice because a slight perturbation of eps3 will change the result 
from 2 clusters to 1 cluster ; Eps3 is TOO CLOSE to the distance between 2 
clusters !!



DBSCAN results Sensitive to Parameters



When DBSCAN works well



When DBSCAN does NOT work well



Summary for DBSCAN
n DBSCAN depends on 2 critical parameters: 

¡ ε and Minpts
n The notion of ε-neighborhood w.r.t. Minpts

threshold 
n Definition of Core vs. Border vs. Noise (Outliner) 

points
n Density-Reachability vs. Density-Connectivity
n Defining a Cluster based on Density-Connectivity 

and MAXIMAL Density-Reachability
n Can be tricky to set the “correct” value of  k (size of 

a cluster) 
n Inability to handle highly variable density within the 

dataset ; outcome sensitive to parameters
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Summary

¢ Clustering: Given a set of points, with a notion of 
distance between points, group the points into some 
number of clusters

¢ Algorithms:
l Agglomerative hierarchical clustering: 

• Centroid and clustroid
l k-means: 

• Initialization, picking k
l EM for GMM
l Density-based Clustering with DBSCAN for Clusters of 

arbitrary shapes

10/30/24
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Backup Slides 
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Backup Slides 
of the 

Derivation of
MLE estimator for GMM
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Maximum likelihood estimation of Gaussian
¢ Given data points xn, n=1,…,N

¢ Find a single Gaussian distribution that maximizes data log-likelihood

¢ Set derivative of data log-likelihood w.r.t. parameters to zero

¢ Parameters set as data covariance and mean
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Maximum likelihood estimation of Gaussian



Clustering 108

Maximum likelihood estimation of GMM
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Maximum likelihood estimation of GMM
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Maximum likelihood estimation of Gaussian



Clustering 111

Maximum likelihood estimation of Gaussian
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Maximum likelihood estimation of Gaussian
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Maximum likelihood estimation of Gaussian
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Maximum likelihood estimation of Gaussian
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Maximum likelihood estimation of GMM
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Maximum likelihood estimation of GMM



Clustering 117

Maximum likelihood estimation of GMM
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Maximum likelihood estimation of GMM


